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Abstract 

Zinc oxide (ZnO) is a low-cost and environmentally friendly material with unique optical properties and a variety 

of nano and microstructures imposing challenges for energy conversion, scintillators, photocatalytic 

wastewater treatment, electrochemical energy storage, or sensing applications. In this work, the nominally 

undoped and Al-doped nanocrystalline ZnO thin layers were pulsed laser deposited (PLD) on fused silica 

glass. The samples were characterized by photothermal deflection (PDS) and photoluminescence (PLS) 

spectroscopy. Excitons were observed at low temperature in both samples at about 3.4 eV. The intrinsic 

samples show the red PL in near infrared region at about 1.9 eV related to zinc vacancies. The results show 

that optical properties can be evaluated from optical spectra of very thin nanocrystalline ZnO layers with the 

thickness below 100 nm. 
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1. INTRODUCTION 

Zinc oxide is a low-cost and environmentally friendly material with unique optical properties and a variety of 

nano and microstructures imposing challenges for energy conversion, scintillators, photocatalytic wastewater 

treatment, electrochemical energy storage or sensing applications [1-3]. A number of typical dopant elements 

such as F, B, Al, Ga, In and Sn have been used so far to produce conducting ZnO films. It is worth underlining 

that among all the group III elements, Al is a cheap, abundant and non-toxic material [4]. Thus Al-doped ZnO 

films are prominent, low-cost substitutes for indium tin oxide films as transparent conducting films in the 

photovoltaic and sensor applications [5-7].  

 In this paper, we use the PLD setup [8] to deposit very thin nanocrystalline intrinsic and Al-doped ZnO films 

on fused silica glass substrates to prove that the optical parameters can be evaluated even from the optical 

spectra of very thin polycrystalline ZnO films with thickness below 100 nm.  

1.1 Pulse laser deposition (PLD)  

Polycrystalline ZnO and Al-doped ZnO layers were prepared on fused silica substrates by pulsed laser 

deposition (PLD) setup from TSST B.V. equipped with KrF (λ = 248 nm) excimer laser COMPex 50. After 

reaching a base pressure of 10–4 Pa, oxygen was introduced with process pressures of 10 Pa with a flow rate 
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of 10 cm3/min. The substrates were placed into a rotating holder (5 rpm). The excimer laser was focused to a 

spot of the area of 2 mm2 and set up at the repetition rate of 20 Hz for target ablation. For the deposition from 

the stoichiometric targets, the pulse energy (measured inside the chamber) was kept at about 24 mJ giving the 

fluence of 1.2 J/cm2, respectively. The number of pulses was 20 000 (sample A) and 40 000 (sample B) 

throughout the experiment, yielding in both cases layers with thickness about 80 nm, see Table 1. After the 

deposition, samples were cooled inside the chamber. We previously discovered a strong effect of the 

atmosphere during this cool-down step [10].  

Table 1 The nanocrystalline ZnO films deposited by PLD on fused silica glass substrates, including the  

               thickness (d), the dielectric constant (), the parameters of the Lorenc (A, E0 and E1) and Drude  

               models (Ep and E2) as well as the optical absorption coefficient at 1 eV () 

Sample d (nm)  A E0(eV) E1(eV) Ep(eV) E2(eV)   (cm-1) 

A (undoped) 85 3.32 1.21 3.61 0.17 0.18 0.59 < 10 

B (Al-doped) 77 3.28 1.41 3.82 0.05 0.39 0.11 730 

1.2 Photothermal deflection spectroscopy (PDS) 

The transmittance, reflectance and absorptance spectra were measured simultaneously in the 300–1400 nm 

spectral range by photothermal deflection spectroscopy (PDS) setup with 150 W Xe lamp, SpectraPro-150 

monochromator (150-mm focal length, f/4-aperture, slits 1/1mm) equipped with two gratings: a UV holographic 

(1200 /mm) and a ruled (600 /mm) blazed at 500 nm. The spectral resolution was 5 nm with the UV holographic 

grating and 10 nm with the ruled grating.  Samples were immersed into liquid (Florinert FC72) to measure the 

relative temperature of the illuminated sample independently for selected photon energies using deflection of 

probe laser beam. The spectra were spectrally calibrated by measuring PDS of a black carbon sample. 

1.3 Photoluminescence spectroscopy (PLS) 

PL spectra were measured at low temperature in the spectral range 360-700 nm with a spectral resolution of 

2 nm using a closed He-circle cryostat OptistatDry (Oxford Instruments, UK) and a focused UV LED (1 mW 

Thorlabs M340F3) equipped with narrow bandpass (BP340) and long pass (LP350) optical filters, operating in 

ac mode at a frequency of 307 Hz. The emitted light was collected and focused onto the 1 mm wide input slit 

of double gratings SPEX 1672 monochromator (220-mm focal length, f/4-aperture, 1200/mm grating, 1/1 mm 

slits,  spectral resolution 2 nm) equipped with Peltier cooled red sensitive photomultiplier (PMT) and a current 

preamplifier with 105 V/A transimpedance (Ametex 5182) to be measured at selected photon energies 

independently by a lock-in amplifier (Ametex 5105) with ac noise level about 10 pA (1 µV). The whole setup 

was spectrally calibrated with Oriel #63358 Quartz Tungsten halogen lamp and converted from wavelength to 

energy scale for quantitative analysis.  

2. RESULTS AND DISCUSSION 

Figure 1 shows the transmittance (T), reflectance (R) and absorptance (A) spectra of the Al-doped ZnO layer 

(sample B). Absorptance spectrum was measured using PDS and put into the absolute scale using 1-R-T 

spectrum. It should be noted that unlike PDS, which measures A directly, the 1-R-T spectrum cannot be used 

to evaluate A below 1%. The dielectric function  (the complex index of refraction n + ik) as a function of energy 

E and the film thickness d were evaluated from the reflectance spectra using Lorenc and Drude models [10] 

included in the commercial FimWizard(c) software (https://sci-soft.com/product/film-wizard/), see Equation 1 

and Table 1.  

𝜀(𝐸) = (𝑛 + 𝑖𝑘)2 = 𝜀∞ (1 +
𝐴2

𝐸0
2−𝐸2+𝑖𝐸1

2 +
𝐸𝑝
2

𝐸(𝐸−𝑖𝐸2)
)             (1) 
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The fit of R spectra is shown in Figure 2. Table 1 also shows the shifts of the central position of the Lorenc 

peak (E0) and the plasma energy (Ep) as expected. Once the index of refraction n(E) and the film thickness d 

were known, the optical absorption coefficient (E) was evaluated from PDS spectra independently at each 

measured photon energy E [11], see Figure 4.  

 

Figure 1 The transmittance (T), reflectance (R) and absorptance (A) spectra of the Al-doped ZnO layer  

(sample B) 

 

Figure 2 The measured (points) and fitted (solid line) reflectance spectra of the undoped (sample A) and Al-

doped (sample B) ZnO layers 
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Figure 3 The spectra of the index of refraction of the nominally undoped (A) and Al-doped (B) ZnO layers 

The direct bad gap of ZnO [12] is not clearly visible in Figure 4 because of the Urbach edge [13], localized 

states below the optical absorption edge related to deep defects and the free carrier absorption in IR region in 

the case of Al-doped sample. The perturbation imposed by Al atom incorporation leads to the atomic relaxation. 

This phenomenon influences atomic rearrangement near Al impurity and generates a free electron in the 

conduction band, which can be considered as a large radius electron polaron increasing the n-type electrical 

conductivity in the crystal in agreement with the known experimental data [14]. The Burstein–Moss shift, in 

which the apparent band gap of a semiconductor is increased because of populated states close to the 

conduction band is also observed [15]. 

 

Figure 4 Optical absorption coefficient spectra of the intrinsic and Al-doped ZnO layers. The optical 

absorptance of the undoped ZnO was below 2.1 eV too low to evaluate the absorption coefficient 
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There was no measurable PL at room temperature. Figure 5 shows the PL spectra of the intrinsic and Al 

doped ZnO layers measured at low temperature under UV LED excitation (340 nm, 1 mW). Excitons observed 

in both samples at low temperature at about 3.4 eV are more pronounced in Al doped ZnO layer. The intrinsic 

sample shows the vacancy related PL in near infrared region at about 1.9 eV as it was explained in our previous 

paper [16]. 

 

Figure 5 Photoluminescence spectra of the intrinsic (sample A) and the Al-doped ZnO layers (sample B) 

measured at low temperature (nominally 4 K) under UV LED excitation 

3. CONCLUSION 

The thin intrinsic and Al-doped nanocrystalline ZnO layers were deposited by PLD on fused silica substrates.  

The effect of Al doping on the optical properties was investigated. The complex index of refraction and the film 

thickness were evaluated from the reflectance spectra using Lorenc and Drude models and the commercial 

FimWizard software. The optical absorption coefficient was evaluated from PDS spectra independently. 

Excitons were observed in photoluminescence spectra at low temperature in both samples at about 3.4 eV. 

The PLS in near infrared region at about 1.9 eV is related to vacancies. The results show that optical properties 

can be evaluated from optical spectra of very thin nanocrystalline ZnO layers with the thickness below 100 nm. 
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