from the conferences organized by TANGER Ltd.
In the present study, the anti-bacterial and mechanical properties of the ZrN/Cu nanostructured coatings were studied. Copper was introduced as the anti-bacterial agent owing to its substantial activity against bacteria. Industrial reactive magnetron sputtering was utilized to synthesize the films with varying copper contents. Mechanical properties were measured using nanoindentation and discussed in relation to the chemical composition. The inhibitory efficiency of the films was tested against the two most common bacteria, including gram-negative (E. coli) and gram-positive (S. aureus) bacteria. We observed that the anti-bacterial efficiency of the samples significantly improved with increasing the copper amount. After 80 min exposure, the coatings with copper amount >12 at% showed 100% activity against both types of bacteria. The highest hardness measured was 28.5 GPa for the low copper coating followed by a gradual decrease with increasing copper.
Keywords: Magnetron sputtering, bacteria, anti-bacterial efficiency, hardness, chemical composition© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.