GREEN SYNTHESIS AND THE STABILIZATION OF SELENIUM NANOPARTICLES USING CARBOXYMETHYL STARCH

1 VISHAKHA Vishakha
Co-authors:
1 ABDEL-MOHSEN A. M. 1 JANCAR J.
Institution:
1 Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic, EU, vishakha.vishakha@ceitec.vutbr.cz
Conference:
12th International Conference on Nanomaterials - Research & Application, Brno, Czech Republic, EU, October 21 - 23, 2020
Proceedings:
Proceedings 12th International Conference on Nanomaterials - Research & Application
Pages:
433-439
ISBN:
978-80-87294-98-7
ISSN:
2694-930X
Published:
28th December 2020
Proceedings of the conference were published in Web of Science and Scopus.
Metrics:
1143 views / 763 downloads
Abstract

The growing interest in biodegradable products paves the way for the safest sustainable earth. Starch is an extensively studied, cost-effective, easily accessible, and highly trusted resource to produce biodegradable products in the present and future. However, the exploitation of these starch in several fields requires substantial changes in its chemical functionalities and related properties. Here, we investigated the conditions (pH, temperature, the concentration of starch, concentration of chloroacetate, time, the ratio between starch/sodium hydroxide, etc.) that affect the preparation of carboxymethyl starch (CMS). The chemical structure and degree of substitution of native starch and CMS were confirmed by Fourier transform infrared ( FTIR), X-ray powder diffraction (XRD), Thermogravimetric analysis (TGA), potentiometric titration, Scanning electron microscope (SEM), and Nuclear magnetic resonance spectroscopy (NMR ). CMS's rheological properties show that CMS's intrinsic viscosity increased with increased degrees of substitutions (DS) from CMS (0.05 to 0.45). The CMS with different DS (0.05 to 0.45) was used for the first time to stabilize selenium nanoparticles (Se-NPs), showing spherical shape with a high homogenous size of Se-NPs (approx. 50 nm). The NPs shape and size stability were investigated and confirmed by different techniques like Dynamic light scanning (DLS), SEM, and Transmission electron microscope (TEM).

Keywords: Selenium nanoparticles, carboxymethyl starch, starch

© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Scroll to Top