from the conferences organized by TANGER Ltd.
A comparative study is reported for electrodeposited copper(I) thiocyanate layers (ca. 500 nm) on two types of conductive/semiconductive substrates; i) carbon (boron-doped diamond_BDD, glass-like carbon_GC), and ii) carbon-free F-doped SnO2 conducting glass (FTO). SEM and Raman evidence that electrodeposition from aqueous solution results in homogenous CuSCN layers with dominant thiocyanate ion bounded to copper through its S-end (Cu−SCN bonding), as in spin-coated CuSCN layers. Electrochemical impedance spectroscopy (EIS) confirms the p-type semiconductivity of layers with a flatband potential from 0.1 to 0.18 V vs. Ag/AgCl depending on the substrate type, and the acceptor concentration (NA) of 5 x 1020cm-3 in all cases. The flatband potentials determined from Mott-Schottky plots (EIS) are in good agreement with the Kelvin probe measurements. The blocking quality of CuSCN layers was tested using Ru(NH3)63+/2+ redox probe. CuSCN deposited on BDD substrate exhibits better blocking properties compared to CuSCN deposited on FTO.
Keywords: Electrodeposition, CuSCN, hole transport material, electrochemistry, impedance spectroscopy© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.