from the conferences organized by TANGER Ltd.
ZnO nanorods have attracted increasing interest in recent years due to their potential in optoelectronic applications. The lack of p-type ZnO emphasizes the importance of rectifying junctions realized on other p-type materials. SiC is a good candidate to create hybrid heterojunctions with ZnO due to its wurtzite crystal structure and a small lattice and thermal mismatch. The ZnO/SiC heterojunctions have a potential to show intense UV electroluminescence. We investigate morphology and electrical properties of a single vertically-oriented ZnO nanorod on a SiC substrate. The current-voltage measurements are performed directly in the vacuum chamber of a scanning electron microscope. The contact to a single nanorod is obtained by a nanoprobe, which allows for the measurement of the current-voltage characteristic of a single nanorod heterojunction of choice. The influence of ZnO growth parameters and post-growth treatment of ZnO/SiC structures are studied with the aim to minimize the density of structural/interfacial defects and to create low-dimensional hybrid heterojunctions with the potential to show intense UV electroluminescence.
Keywords: Chemical bath deposition, current-voltage characteristics, SEM, ZnO nanorods, ZnO/SiC heterojunctions© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.