from the conferences organized by TANGER Ltd.
Diamond thin films and nanodiamond particles are considered promising for addressing the long-term challenge of organic photovoltaics: efficiency and stability. In this work, we characterize stability of surface potential and photovoltage on polyfunctional detonation nanodiamonds merged with polypyrrole oligomers. The polyfunctional-detonation nanodiamond (poly-DND), polypyrrole (PPy), and poly-DND/PPy composites were prepared on p-type silicon wafer substrates. In order to investigate illumination induced effects, surface potential and photovoltage of the samples were characterized by macroscopic Kelvin Probe method as a function of time. The poly-DND/PPy composite exhibits better stability of surface potential and surface photovoltage in short-term as well as in long-term (up to 8 weeks) compared to individual materials. The nanodiamond composites thus appear advantageous for use in organic photovoltaics.
Keywords: Diamond, nanoparticles, polypyrrole, scanning Kelvin probe© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.