from the conferences organized by TANGER Ltd.
The current work deals with preparation and characterization of electrically lossy ferrofluid which can be used as a mediator for radio frequency (RF) - capacitive hyperthermia method. To this end, ferrofluid that can absorb the energy of alternating electrical field at the frequencies commonly employed in RF-capacitive hyperthermia (13.56 and 27.12 MHz) has been prepared by co-precipitation method. This ferrofluid comprises of electrically conductive component with core-shell structure, i.e. magnetite nanoparticles (NPs) coated by dextran, organized in chain-like structure. The effect of RF – capacitive hyperthermia in the presence of mediator was studied on the series of tests performed on HaCaT and HepG2 cell lines using MMT test. The RF-electrical field (13.56 MHz) with controllable power output was applied using the EHY-110 SA (Oncotherm group) to increase the temperature of samples from 37 °C up to target temperature of 44 °C. The results of in-vitro test clearly indicate that the usage of capacitive heating of obtained ferrofluid substantially contribute to cytotoxic effect of hyperthermia treatment.
Keywords: Iron oxide nanoparticles; Dextran; Core - shell nanoparticles; Hyperthermia© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.