from the conferences organized by TANGER Ltd.
The graphitic carbon nitride (g-C3N4) samples were prepared by the three different methods: (i) heating of melamine at 600 ºC (bulk g-C3N4), (ii) exfoliation of bulk g-C3N4 by heating at 500 ºC (Ex500) and (iii) exfoliation of bulk g-C3N4 by ultrasonication in an aqueous dispersion (ExUltra). The exfoliation was performed to obtain g-C3N4 nanosheets or other nanostructures. The samples characterization was performed by UV-Vis diffuse reflectance (DRS UV-Vis), photoluminescence (PL) spectroscopy and photoelectrochemical (PEC) measurement. The smallest transition energies Et was evaluated for bulk g-C3N4 (Et = 2.84 eV). The exfoliation by heating and ultrasonication caused both increase of transition energies Et at 3.07 eV and blue-shift and intensity increase of PL emission bands. The exfoliation by heating at 500 ºC increased photocurrent in comparison with the bulk g-C3N4 and ultrasonicated samples. This indicates the beneficial effect of the exfoliation by heating for various photocatalytic applications due to the higher mobility and separation efficiency of photo-induced carriers.
Keywords: Graphitic carbon nitride, optical properties, photoelectrochemical properties© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.