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Abstract  

Simple material and mass balance were efficiently drawn in high carbon ferromanganese production processes 

based on simple calculations. However the prediction on different products in different reactive zones using  a 

mathematical model using artificial intelligence nueral network has not been well conducted. The current 

project has investigated means to use AI to predict products. The establishement of a mathematical model to 

predict each product in each zone is not a trivial exercise. To ease the prediction of every product quantitatively, 

MATLAB was used as an efficient tool to generate the mathematical programming model for each product. 

Theoretical assumptions were used to generate the mathematical programming model which was developed 

per reactive zone.    
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1. INTRODUCTION 

The Artificial Neural Network predicts the furure based on the past data that have been learnt. In the last three 

decades, the most golden and worthwhile technology broadly used in a number of applications in diverse areas 

is the Artficial Neural Network [1]. Modelling and  prediction using Artificial Neural Network has generated 

strong and reliable models in the tourism industry [2-4] while the prediction using Artificial Neural Network in 

finances has  [5, 6]. For neural netwaork amongst the first-order learning method the resilient backpropagation 

(Rprop) algorithm proposed by many researchers stands out [7]. It has proven fast convergence, good stability 

and reliable results are generated [7-10]. A study on the speeding up backpropagation algorithm was proposed 

[11]. To increase the rate of convergence, heuristics were suggested [12] while the complexity of the 

derandomized evolution strategy was reduced using different methods [13-15].  In the pyrometallurgy research 

area, the Artificial Neural Network has started to be at the centre of prediction. In this work, the Lavenberg-

Marquardt backpropagation algorith (trainml) has adopted to generate a model.  

2. METHODOLOGY 

The setting of variables that are connected and the configuration of the network are the pillars of the 

performance of an artificial neural network model in the current work.  Levenberg-Marquardt backpropagation 

algorithm (trainlm) was used. The conjugate gradient backpropagation (transcg) was utilised when the memory 

was narrow and the software assigned initial parameters randomly. The best artificial neural network was 

obtained through a “trial and error” approach of setting and re-setting the number of hidden layers, learning 

functions and number of neurons. Figure 1 below shows the structure of the neural network. 
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Figure 1 Structure of the neural network [16] 

Considering that x data have been collected, the establishment of the model was conducted by considering 

an average of z samples of the experimental data were used for the training step. The remaining data samples 

were halved. The first half of the samples was utilized to test the artificial neural network prediction performance 

and the second half was used for the validation of the artificial neural network model. The regression value 

(R2) remained the factor determining whether the artificial neural network used was learnt well and could be 

able to establish the relationship between the inputs and outputs for different parameters and to predict the 

outputs accurately. The deviations lower than 3% were considered to confirm the strength of the model. In this 

work the deviations were examined to assess the reliability of the model. The input data were derived from the 

products descending from the prereduction zone and gases from the lower zone. A mass of 1 ton was assumed 

to have been produced to assess the model. 

3. RESULTS AND DISCUSSION 

3.1 MnO prediction 

Figure 2 below shows the targeted versus predicted values and the deviations. From Figure 2 provides the 

comparison between the targeted and the predicted values of MnO. It transpires that the deviations values are 

below 3% as per the criteria with only one discrepancy of 21%. This qualifies the mathematical programming 

model to be strong and reliable since the calculated regression value was 0.9989 which is an indication that 

the algorithm is valid. The prediction of MnO in zone 2 is therefore efficient.  

 

 

 

Figure 2 Artificial neural network (ANN) prediction Vs Target and Deviation of MnO  

2.2.1 Fe prediction 

Figure 3 presents the targeted, the ANN predicted values and the deviation for Fe. It can be noted the 

closeness between the targeted and predicted values. Also, the calculated deviations indicate that the 

discrepancies between the target and output values remain below 3%. This makes the model strong and 

reliable to predict Fe. 
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Figure 3 Artificial neural network (ANN) prediction Vs Target and Deviation of Fe 

2.23  MgO prediction 

The targeted, predicted and deviations for MgO in the reduction zone are depicted in Figure 4 below. The 

difference between the predicted outputs and the targeted values is considerably narrow. Besides, the 

calculated deviations indicate that three remarkable discrepancies between the target and output values were 

noted ranging between 39.8% and 20.72%. The discrepancies are not impacting the robustness of the model 

since it is amongst thousands of values generated. 

 

  

 

 

 

Figure 4 Artificial neural network (ANN) prediction Vs Target and Deviation of MgO 

2.2.4 CaO prediction  

Figure 5 shows the correlation between the target, the ANN values and the deviation for CaO in the reduction 

zone. The regression value generated from the model was 0.99973 and only one deviation of 7.18% was 

recorded whereas the rest of values remained below 3%. The model is therefore strong and can be used to 

predict CaO in the reduction zone. 
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Figure 5 Artificial neural network (ANN) prediction Vs Target and Deviation of CaO 

2.2.5 SiO2 prediction 

Figure 6 shows the correlation between the targeted SiO2 values, the predicted and the deviations to assess 

the model. A regression calculated value of .99975 was recorded. It showed that the targeted values are very 

close to the predicted values with 12.56% as the highest deviation value. The model is therefore valid and can 

be used to predict SiO2 in the reduction zone. From the regression value, the closeness between targeted and 

predicted values, the deviation values it is concluded that the mathematical programming model is valid. 

 

 

 

Figure 6 Artificial neural network (ANN) prediction Vs Target and Deviation of SiO2 

3.2 Al2O3prediction 

Figure 7 below draws the predicted outputs match closely the target values. The calculated deviations 

remained below 4 %. 
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Figure 7 Artificial neural network (ANN) prediction Vs Target and Deviation of Al2O3 

4. CONCLUSION 

The grading of the furnace has led in the model to establish of a reliable mass and energy balance. An empirical 

model led to generate data that were used in the establishment of the mathematical programming of the model. 

Due to a non-linear correlation, MATLAB was used as tool. The correlation for global models has been applied 

successfully to furnace with nondeterministic input variables. The models consist of computational intelligence 

techniques and one algorithm. With the available dataset, training was performed using the neural network 

fitting tool, the best iteration was considered using the R2, deviation values obtained to facilitate the prediction 

of mass balance or energy balance. Results have proven that the mathematical programming model was valid 

and could be used to predict different products in the reduction zone during high carbon ferromanganese using 

Artificial Neural Network. 
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