from the conferences organized by TANGER Ltd.
Growing efforts for weight and gas emission reduction in automotive industry led to development of advanced high strength steels (AHSS) with a very good strength-to-ductility balance. However, AHSS can be prone to hydrogen embrittlement, which leads to the degradation of mechanical properties, mainly ductility, in the presence of hydrogen. It can limit the applicability of AHSS for the car body construction. Therefore, it is crucial to assess the risks associated with hydrogen absorption in AHSS during corrosion processes.In this work, a novel technique for hydrogen detection was used. Scanning Kelvin probe force microscopy (SKPFM) enables measurement of Volta potential difference with very high spatial resolution. SKPFM measurements of changes in Volta potential difference were performed on an AHSS grade in order to study hydrogen entry and absorption as a result of atmospheric corrosion and electrochemical hydrogen charging.
Keywords: High strength steels, hydrogen, SKPFM© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.