from the conferences organized by TANGER Ltd.
Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration. The present investigation is focused on the design of an interpenetrated magnesium – tricalcium phosphate (Mg-TCP) composite. In this study, TCP preforms were 3D-printed with a tip of 250 µm in aperture. Final preforms with parallel grids and internal pores of 150, 350, 500 and 1000 µm were obtained and sintered at 1100 °C for 5h. Later, the infiltration with commercial pure Mg was performed using a novel Current Assisted Metal Infiltration (CAMI) technique, which allows an effective and fast infiltration of brittle ceramic preforms with molten metal. Fast melting and final solidification of the Mg-TCP composite were achieved with the assistance of a pulsed electrical current as heating resource. The effect of pore size on the infiltration was analysed by X-ray computed microtomography (μCT). Virtual tomographic reconstructions were used to observe the components distribution and the remaining porosity of the composite after the infiltration. Results show a good penetration of the metal into the TCP preforms. Nevertheless, fracture of some TCP structures after the infiltration was observed, mainly in the preforms with a pore size of 150 µm. Some porosity after infiltration was registered, however, it does not exceed 5 % of the total volume of the specimen.
Keywords: Magnesium, tricalcium phosphate, current assisted metal infiltration, micro-computed tomography© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.