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Abstract 

Cooling is one of the critical points during aluminum casting. Improper cooling leads to a structure which isn't 
homogenous, full of internal and surface defects. It is necessary to know the boundary conditions (heat transfer 

coefficient or heat flux) for cooling optimization. The boundary conditions for different types of cooling are 
obtained from experiments.  

This article is focused on the cooling of vertical surfaces of aluminum by flat water jets. The sample initial 
temperature was close to the liquid state. The sample was cooled while in a vertical position by a flat water jet 

which hit the upper part of the cooling surface, and then the water flow down along the surface. The 

temperatures were recorded during the experiment by a set of thermocouples which were installed inside the 

sample. Thermocouples were placed closed to the cooled surface at different heights. The moving horizontal 
Leidenfrost front between nucleate and film boiling could be observed during the experiment. This front moved 

downward along the sample surface. 

The aim of this work is to evaluate the boundary conditions for described measurements. The evaluation held 
due to the solution of the 2D inverse task, similar to Beck’s sequential methods. The computation procedure 

was modified to be able to deal with the moving Leidenfrost front between low and height cooling intensities. 

Results are presented in a form of heat transfer coefficients as a function of position and temperature. 
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1. INTRODUCTION 

Controlling the temperature field history inside a material is important for many industrial applications, including 
casting. In some applications, the temperature history (especially temperature gradients) determinates the final 

material structure. In other applications temperature inhomogeneity leads to defects due to internal tension. 

The temperature field inside a material can by simulated numerically if the boundary conditions are known. 
The Heat Transfer Coefficient (HTC) is frequently used as a form of boundary condition. The HTC can by 

calculated by an empirical formula (from textbooks [1, 2]) for simple geometry, short temperature range and a 
special type of cooling. However, in most cases the boundary conditions are obtained from measurement by 

solving the Inverse Heat Conduction Problems (IHCP). 

This article deals with the 2D IHCP for a highly heat-conductive sample made from aluminum. The sample 
was cooled using a flat water jet in the impact area and by water flowing along the surface below. Solving the 

IHCP is made more difficult by the Leidenfrost effect combined with a special type of cooling conditions. 

2. DESCRIPTION OF THE EXPERIMENTS 

2.1. Experiment description 

The test sample was a small aluminum board (slab). The sample was placed in the vertical position during the 
experiment. A set of thermocouples were placed inside the sample close to the cooled surface at different 

heights along its length (see cross section of Fig. 1). 
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Cooling is caused by flat water jets which impact the upper part of the cooling surface (impingement zone), 
and by the water flow down along the surface (see Fig. 1). 

Two different cooling regimes can be observed during the experiment. First type is intensive cooling from the 
beginning (even at high temperature) in area close to the impingement zone. Second type is low cooling from 

the beginning until the Leidenfrost temperature is reach. The second type is occurs at the rest of cooling 
surface. 

Fig. 1 Cross section of aluminum sample  

2.2. Leidenfrost effect 

The Leidenfrost effect (LF effect) creates a situation where the heat flux does not monotonically increase as a 
function of the temperature difference between the surface and the surrounding temperature. The temperature 
for which the heat function reaches the local minimum is called the Leidenfrost temperature. This point is 
located between the transition and film boiling regimes; see Fig. 2 [1]. 

Fig. 2 Typical boiling curves for water at 0.1 MPa, I - Convection, II - Nucleate boiling, III - Transient boiling, 

IV - Film boiling 

3. INVERSE HEAT CONDUCTION PROBLEM 

3.1. Direct versus Inverse problem 

Tasks to find effects from known causes are called direct tasks, while tasks for observed (known) effects but 
unknown causes are called inverse tasks [3]. 

Specifically, for the heat conduction problem: 

• Causes - initial temperature and boundary conditions 

• Effects - temperature distribution over time 
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Some simple direct problems can be solved analytically. For other, more complex direct problems(for example, 
temperature-dependent material properties), numerical methods FDM [4], FVM [5], FEM [6] can be used. 

Inverse heat conduction problems are usually referred to as ill-posed. Even a small change in input data can 
lead to significant differences in results. Solving such a problem much more complicated than solving direct 

tasks. If the inverse heat conduction problem is linear, then the full domain method [3], Tikhonov’s 
regularization [7], etc. can be used. A sequence method is preferable to use for temperature-dependent 

material properties or large amounts of data. The basics of Beck’s sequential method [3] are described in the 

next chapter. 

3.2. Beck’s sequential method for 1D problems 

The basic idea of the sequential approach is to solve the entire task step by step in time. In each time step tn
there is Nf the measured temperature at an interior point at time tn, tn+1,..,tn+Nf to obtain the heat flux Qn at the 
boundary at time tn. Qn is determined from the solution of a minimization problem: 
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where Yi are measured temperatures, Ti|Qn are temperatures calculated using a direct calculation for constant 

heat flux Qi = Qn. 

Formula (2) can be used in a linear case.  
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where Ti are temperatures calculated for zero heat flux and Ri  are sensitivity coefficients. 

In other cases, a different standard minimization method can be used. For example Brent’s optimization 

method (which was used in this article) [8]. 

Nf is the number of forward time steps and operates as a regularization parameter. These 

methods are unstable for small values of Nf and results become too smoothed for large 
values [9]. The optimal number of forward time steps is usually searched manually or is 

obtained by some criteria. 

3.3. 2D problem with M thermocouple along the surface 

With some modification, the method which was described previously can be used to 
solve a 2D problem. The boundary conditions on the cooling surface are represented by 

the M functions. Each heat flux function corresponds to one temperature sensor. Values 
from i-th heat flux function Qi(t) are used as a boundary condition on the part of the 

surface which is closest to the center of the i-th temperature sensor in the direct problem 

(see Fig. 3) 

The error term (2) is extended by temperature difference contributions from all 
temperature sensors. The new minimization task at time step tn is to find the N value for 

Q1(tn), Q2(tn), …,QM(tn).

Fig. 3 Heat flux 
function 

allocation to the 

surface area 
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3.4. Modification for solving task with a moving Leidenfrost front 

The heat flux as a function of only time (not vertical position), was 
assumed in the previous chapter. This assumption is correct if the real 

heat flux is almost homogeneous at the interval where it is approximated 

by the calculated heat flux function. Unfortunately, this is not true for 
experiments described earlier in this text, because the heat transfer 

coefficient is strongly dependent on temperature and surface 

temperatures are inhomogeneous in the vertical direction, as well. In 

other words, a small temperature inhomogeneity (near the LF 
temperature) in the vertical direction can cause large heat flux 

inhomogeneity which can be seen in the typical HTC function of 

temperature in Fig. 4. 

The consequences of this imprecision can be seen in the smooth shape of the HTC function around the LF 
point (Fig. 6) or even in small differences between measured and calculated temperatures (Fig. 7).  

Inhomogeneity in the vertical direction can be theoretically suppressed by reducing the spacing between 
thermocouples. In practice, a minimal distance between thermocouples is used, because each thermocouple 

slightly distorts the temperature field in the surrounding material. 

The sample is undercooled (under the LF temperature) in the area where the water jet strikes the surface at 

the beginning of the experiment. Then, the undercooled area begins expanding downward along the surface 
due to heat conduction inside the material. Surfaces with a higher temperature than the LF temperature are 

almost uncooled by water flow. Consequently, only the positions of points where the surface temperature is 

equal to the LF temperature are critical for the inverse calculation. The aforementioned points lie on a horizontal 

line which can be called the Leidenfrost front (LFF). 

The inverse calculation method is modified so that the mowing LFF always lies on a border between areas on 

the surface which corresponding to the functions HTCi and HTCi+1. This is performed by shifting the borders 
during calculation (see Fig. 5). The speed of LFF motion can be observed in the experiment optically or can 

be determined by solving a two-stage optimization problem; the first stage is part of the IHCP, the second is a 

velocity determination based on residual errors from the first stage). 

Fig. 5 Region corresponding to Qi-1, Qi, Qi+1 with shifting borders at time 

4. DISCUSSION 

This method was tested on temperature records from measurement. Comparison of the measured and 
calculated temperature for both methods is shown on Fig. 6. Evaluated HTC by both methods are similarly in 

first cooling regime (near to impingement zone). Different value form second zone are shown in Fig. 7

exemplified by three HTC functions. 

Fig. 4 Typical shape of the HTC 
function 
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Fig. 6 Comparison of measured temperature with calculated temperature 

Fig. 7 Comparison of relative HTC function with and without shifting of borders 

5. CONCLUSION 

Cooling experiments with an aluminum sample were done. Boundary conditions were obtained by solving the 
2D inverse heat conduction problem (with and without shifting boundary modification). A comparison of these 

two methods (Figs. 6, 7) shows that despite the fact that the temperature difference is not very large; the 

differences in heat flux are substantial. 
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