from the conferences organized by TANGER Ltd.
The Mg–11.5wt.%Zn–3.0wt.%Al and Mg–5.1wt.%Zn–3.3wt.%Al–0.1wt.%Ca alloys were squeeze cast under a protective gas atmosphere (Ar + 1% SF6). Precipitation reactions were studied by differential scanning calorimetry at heating rates of 0.5 – 30 K/min. Electrical resistometry at 78 K and microhardness (HV0.5) at room temperature were performed additionally. The specimens were subjected to isochronal annealing with steps of 20 K/20 min up to 300 °C. The thermal measurements revealed two exothermic effects during linear heat treatment in the temperature range of 100 – 250 °C at heating rates of 2 – 30 K/min. In agreement to the thermal response, two stages of electrical resistivity decrease were observed in the same temperature range. The lower thermal and absolute resistivity changes were observed in the alloy with Ca-addition. Activation energies obtained from the thermal measurements using the Kissinger method for the two mentioned processes were calculated as Q1 = (124 ± 17) kJ · mol-1 and Q2 = (133 ± 4) kJ · mol-1 in both alloys.
Keywords: Differential scanning calorimetry, electrical resistometry, activation energy, icosahedral phase© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.