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Abstract  

Iron aluminides are known for their excellent oxidation and corrosion resistance. If they are exposed to hostile 

environment, a protective Al2O3 layer creates on its surface. Through an addition of Zr, their high temperature 

mechanical properties could be enhanced, however, their oxidation resistance is also affected. A small amount 

of Zr enhances the high temperature oxidation resistance, but at higher concentration it creates ZrO2 which 

has a detrimental effect on the oxidation behaviour.  
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1. INTRODUCTION  

Remarkable oxidation and corrosion resistance of iron aluminides makes them potential candidates to replace 

nickel-chromium-based stainless steels in high-temperature structural applications [1-6]. However, iron 

aluminides suffer also from some disadvantages, e.g. insufficient mechanical strength at elevated 

temperatures (over 600 °C), brittleness at room temperature and the associated poor machinability.  

In the last years, considerable research effort has been devoted to an attempt to increase the high temperature 

mechanical properties [7-11]. It has been shown, that increase in yield stress could be achieved for example 

by a third element addition. A suitable method to improve the mechanical strength of the iron aluminides 

appears hardening by secondary phases such as carbides, nitrides, oxides or intermetallic phases. Significant 

increase in strength was achieved through alloying with elements involved in the formation of very hard and 

stable Laves phases [12-15].  

Due to very limited solubility of Zr in Fe-Al, even a small addition of Zr leads to precipitation of Laves phase 

and/or �1 phase [16-18]. Presence of these phases enhances mechanical strength but however, it reduces 

ductility and machinability [19-22]. It has been shown, that a small amount of Zr can eliminate the Al2O3 scales 

spalling, but higher amount of Zr showed detrimental effect on high temperature oxidation resistance due to 

formation of ZrO2 which disrupts the Al2O3 barrier protective function [20, 23-26].  

In the present paper the oxidation resistance at 900 °C of Fe-30Al-xZr alloys (where x = 0.4, 0.9 and 5.2 at. 

%) was evaluated and compared to the results obtained for similar alloys. Also the structure of alloys after 500 

exposition was studied and described. 

2. EXPERIMENTAL 

The chemical composition of the materials is given in Table 1.  

Table 1 Chemical composition of investigated alloys 

Alloy Al [at. %] Zr [at. %] Fe [at. %]

30_0 29.3 0.4 
Bal. 30_1 29.2 0.9 

30_5 30.1 5.2 

Cylindrical samples with diameter of 7 mm and height of 19 mm for testing of oxidation resistance were cut by 

the electro-discharge machining, their surface was subsequently manually polished by SiC paper grit 1200.  
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Cyclical oxidation tests were performed in an electric furnace at 900 °C in alumina crucibles. Heating and 

cooling between individual cycles was realized slowly in the furnace to minimize spallation of the oxide scales. 

The samples were weighted before tests and after 25, 50, 100, 200, 300, 400 and 500 hours.  Measured weight 

increases were then related to the area units. The oxidation resistance was then calculated as a parabolic rate 
constant (kp) according to equation (1): 

(�m/A)2 = kp t,             (1) 

where �m [mg] is a mass increase, A [cm2] is the sample surface area, t [s] is time. The kp values were 

calculated from t = 200 h. 

The structure of samples in both, in the as cast state and after 500 h oxidation, was evaluated using optical 

microscope and scanning electron microscope equipped with an energy-dispersive detector.  

3.  RESULTS 

3.1  Structure 

The initial structure of alloys in as cast state was described in detail in [21, 22]. The as cast structure was 

composed of a lamellar eutectic Fe-Al/Laves phase in a Fe-Al matrix.  

The structure after 500 h of oxidation at 900 °C is shown in Fig. 1. Long-time exposition to 900 °C led to 

coarsening and coagulation of LP, a part of LP transformed to �1 phase according to equilibrium Fe-Al-Zr 

diagram [16, 17]. It is obvious, that preferential selective oxidation occurs in Zr-rich Laves phase (bright areas 

in SEM images). In both, OM and SEM images, the depth of oxidation ingress is visible; the depth grows with 

Zr content.  

In the case of 30_5 alloy four different areas are clearly visible (see Fig. 2). Area I is composed of oxides 

(Fe2O3, Al2O3 and ZrO2) and shows the depth of oxide penetration. Area II is composed of Fe-Al and shows 

the depth from which Zr atom diffused into the oxide layer. Two-phase area III is composed of Fe-Al and Laves 

phase. Quantitative EDS analysis showed lower Al-concentration compared to the three phase IV area. Lower 

Al content could be explained through the Al-diffusion into the oxide layer similarly as Zr-absence in area II. 

The difference in Al and Zr diffusion depths corresponds to their different atom diameter.  

3.2  Oxidation kinetics 

Table 2 Parabolic rate constants 

Alloy kp (g2 cm-4 s-1), 900 °C 

30_0 (Fe-29.3Al-0.4Zr) 6.4 x 10-13

30_1 (Fe-29.2Al-0.9Zr) 5.8 x 10-13 

30_5 (Fe-30.1Al-5.2Zr) 4.1 x 10-11 

Fe-20Al-0.1Zra 9 x 10-14 [20] 

Fe-32Al-0.8Zra 4 x 10-13 [20] 

Fe-25Ala 1.0 x 10-13 [27] 

The calculated parabolic mass constants were calculated for a time interval from 200 to 500 hours and are 
summarized in Table 2. For comparison, in the table are also listened values from [20, 27]. It is obvious, that 

alloys with lower Zr content show very low values of kp, while increase in Zr concentration leads to considerable 

increase in kp, what indicates its detrimental effect on the high temperature oxidation resistance. From the k 

values it is obvious, that the oxidation resistance grows also with the Al content. 
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Fig. 1 Structure of samples oxidized at 900 °C for 500 h. In the left column are images taken by optical 

microscope, on the right side are SEM images taken in Z-contrast. A) 30_0 alloy; B) 30_1 alloy; C) 30_5 

alloy. From the images the ingress of oxidation into the alloys is obvious. The oxidation affects 

preferentially Zr-containing Laves phase (bright phase in SEM). The depth oxidation ingress grows with Zr 

content 
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Fig. 2 Structure of 30_5 alloy after 500 h at 900 °C 

A) Four areas are marked: I. oxidic layer Al2O3 + ZrO2; II. Fe-Al; III. Fe-Al + LP; IV. Fe-Al + LP + Ê1 

B) a detail of I/II and II/III boundary 

C) Detail of III/IV boundary 
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CONCLUSION  

After oxidation at 900 °C the inner structure is three-phase. In the Fe-Al matrix occur Laves phase and �1

phase.  

With increasing amount of Zr grows the depth of oxidation ingress into the material. The Zr containing Laves 

phase is oxidized preferentially. 

Near the sample surface, four areas were observed. Under the top oxide layer there is Fe-Al area. Then follows 

a two phase area Fe-Al + LP with lower Al content compared to the inner three phase material where FeAl + 

LP + �1 phases were identified. Absence of Zr in II-zone and decrease of Al in III-zone could be explained 

through the diffusion of Zr and Al atoms to the surface to form the oxides.  

During the oxidation Al2O3 oxide layer forms on the surface. With increasing Zr concentration ZrO2 appears in 

the oxide layer. The presence of ZrO2 in low concentration enhances the Al2O3 adhesion, however, in higher 

amount disrupts its protective/barrier effect and dramatically decreases the high temperature oxidation 

resistance.  

Parabolic rate constants were calculated. While increase of Zr content from 0.4 to 0.9 led to insignificant 
change in kp, the 30_5 alloy shows nearly two orders of magnitude higher kp value what indicates a sharp drop 

in oxidation resistance. 
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